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Length and time scale divergences at the magnetization-reversal transition in the Ising model
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The divergences of both the length and time scales, at the magnetization-reversal transition in the Ising
model under a pulsed field, have been studied in the linearized limit of the mean field theory. Both the length
and time scales are shown to diverge at the transition point and it has been checked that the nature of the time
scale divergence agrees well with the result obtained from the numerical solution of the mean field equation of
motion. Similar growths in length and time scales are also observed, as one approaches the transition point,
using Monte Carlo simulations. However, these are not of the same nature as the mean field case. Nucleation
theory provides a qualitative argument that explains the nature of the time scale growth. To study the nature of
growth of the characteristic length scale, we have looked at the cluster size distribution of the reversed spin
domains and have defined a pseudocorrelation length that has been observed to grow at the phase boundary of
the transition.@S1063-651X~99!50405-4#

PACS number~s!: 05.50.1q
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The dynamic response of pure Ising systems to time
pendent magnetic fields is currently being studied intensiv
@1#. In particular, the response of the Ising systems to pul
fields has recently been investigated@2–4#. The pulse can be
either ‘‘positive’’ or ‘‘negative.’’ At temperaturesT below
the critical temperatureTc of the corresponding static cas
~without any external field!, the majority of the spins orien
themselves along a particular direction, giving rise to
prevalent order. In the following we denote, by positive~or
negative! pulse, an external field pulse applied along~or op-
posite! the direction of the existing order. The effects of
positive pulse can be analyzed by extending appropria
the finite size scaling technique to this finite time windo
case@2#, and it does not involve any new transition or intr
duce any new thermodynamic scale into the problem. T
negative field pulse, on the other hand, induces a new
namic ‘‘magnetization-reversal’’ transition, involving com
pletely new length and time scales@3,4#. In fact, we believe
that the spontaneously occurring dynamic symme
breaking transition in Ising models under~high frequency!
external oscillating fields@1,5# actually occurs during this
negative pulse period~and not during the positive pulse pe
riod as compared to the instantaneous existing order in
system!, and the universality classes of these two transitio
are identical. We report here the results of an investiga
on the nature of the characteristic length and time sc
involved in this dynamic magnetization-reversal transition
an Ising model under the negative pulsed field.

In the absence of any symmetry-breaking field, for te
peratures below the critical temperature of the correspond
static case (T,Tc), there are two equivalent free energ
minima with average magnetizations1m0 and 2m0. If in
the ordered state the equilibrium magnetization is1m0 ~say!
and a very weak pulse is applied in the direction opposite
the existing order then, temporarily, during the pulse peri
the free energy minimum with magnetization2m0 will be
brought down compared to that with1m0. If this asymmetry
is made permanent, then any nonvanishing field~strength!,
which is responsible for the asymmetry, would eventua
PRE 591063-651X/99/59~5!/4717~4!/$15.00
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induce a transition from1m0 to 2m0 ~in the limit of van-
ishing field strength!. Instead, if the field is applied in the
form of a pulse, the asymmetry in the free energy wells
removed after a finite period of time. In that case, the po
of interest lies in the combination of the pulse height
strength (hp) and its width or duration (Dt) that can give
rise to the transition from1m0 to 2m0. We call this a
magnetization-reversal transition. A crucial point about t
transition is that it is not necessary that the system attain
final equilibrium magnetization2m0 during the presence o
the pulse; the combination ofhp andDt should be such tha
the final equilibrium state is attained at any subsequent ti
even a long time after the pulse is withdrawn~see Fig. 1!.
The ‘‘phase boundary,’’ giving the minimal combination o
hp andDt necessary for the transition, depends on the te
perature. AsT→Tc , the magnetization-reversal transitio

FIG. 1. Schematic time variation of the pulsed fieldh(t) and the
corresponding response magnetizationm(t) for two different cases.
The solid line indicates no magnetization-reversal case, wherea
dashed line indicates a magnetization-reversal case.
R4717 ©1999 The American Physical Society
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occurs at lower values ofhp and/or Dt and the transition
disappears atT>Tc .

In the present paper we present an argument that this
namic transition corresponds to infinite time and leng
scales, all along the phase boundary in thehp2Dt plane at
any temperature atT,Tc . We show that the relaxation tim
t and the correlation lengthj both diverge as one approach
the phase boundary. In the mean field case, we show~using
equations of motion linearized in the magnetization! that

t; lnS 1

umwu D , j;AlnS 1

umwu D ,

wheremw is the ‘‘order parameter’’ for the transition, give
by the magnetization at the time of withdrawal of the pul
starting fromm0, the equilibrium magnetization at the tem
perature T(,Tc) ~see Fig. 1!. It may be noted that
mw(T,hp ,Dt)50 at the phase boundary of th
magnetization-reversal transition.

We also show thatj and t grow sharply as one ap
proaches the phase boundary in the Monte Carlo cas
well, although the nature of the growths are different fro
the mean field case. We also study the shapes and siz
the reversed spin domains as one approaches the
reversal transition phase boundary in the Monte Carlo c
We compare the observed growth in the relaxation time
this case with that predicted by the nucleation theory.

The Ising model in the presence of an external magn
field is described by the Hamiltonian

H52
1

2 (
( i j )

Ji j SiSj2(
i

hiSi , ~1!

whereSi denotes the spin ati th site,Ji j is the cooperative
interaction between the spins at sitesi and j and (•••) de-
notes the nearest-neighbor pairs. Herehi is the external field,
which is allowed to be time dependent, and also site dep
dent, to allow investigation of separation-dependent corr
tions. The free energy of the system in the Bragg-Willia
approximation is given by@6#

F52
1

2 (
( i j )

Ji j mimj2(
i

himi

1(
i

T

2 F ln~12mi
2!1mi lnS 11mi

12mi
D22 ln 2G , ~2!

with mi5^Si&, where^•••& denotes the thermal average.
the presence of a time- and site-dependent field, the ti
dependent magnetization satisfies the Langevin equation

dmi

dt
52

l

T

dF

dmi

5lF(
j

Ki j mj~ t !1
hi~ t !

T
2

1

2
lnS 11mi~ t !

12mi~ t ! D G , ~3!

whereKi j 5Ji j /T and l is a constant. Differentiation with
the space- and time-dependent magnetic fieldhi(t) generates
the space- and time-dependent susceptibility. After the
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ferentiation we can sethi(t)5h(t) to obtain results for a
pulsed field uniform in space. Thenmi(t)→m(t) gives

dm~ t !

dt
5lFK~0!m~ t !1

h~ t !

T
2

1

2
lnS 11m~ t !

12m~ t ! D G . ~4!

The resulting equation for the susceptibility, in the Four
space, is

dxq~ t !

dt
5lFK~q!2

1

12m2~ t !
Gxq~ t !1

l

T
d~ t2t8!. ~5!

Here, K(q) is the Fourier transform ofKi j ; for small q,
K(q).K(0)(12q2); in the mean field theoryK(0)5Tc /T.
Using Eqs.~4! and ~5!, we can write

dxq~ t !

dm~ t !
5

FK~q!2
1

12m2~ t !
Gxq~ t !

K~0!m~ t !2
hp

T
2

1

2
lnF11m~ t !

12m~ t !G
. ~6!

In the limit whenm(t) is small, retaining up to the linea
term in m(t),

dxq~ t !

dm~ t !
5

@K~q!21#xq~ t !

@K~0!21#m~ t !2
hp

T

. ~7!

This equation can now be solved in the three differe
time zones~Fig. 1!: namely, in the equilibrium regime befor
the application of the pulse wherem5m0 ~regime I!, the
~nonequilibrium! pulsed period regime, at the end of whic
m5mw ~regime II!, and the regime after the pulse is with
drawn ~regime III! when the system eventually returns
equilibrium @with m(t→`)52m0 if the transition occurs,
or 5m0 if it does not#. Hence in regimes II and III, we ge
the nonequilibrium susceptibilityxq as a function ofm(t).
The solution of Eq.~4! also gives the nonequilibrium mag
netizationm(t), and hence we can also arrive atxq(t). Not-
ing thatxq(t)5xq

s whenm(t)5m0, at the start of regime II,
wherem0 andxq

s are equilibrium values of the magnetizatio
and susceptibility respectively, we can integrate Eq.~7! in
that regime to obtain

xq~ t !

xq
s

5Fm~ t !2G

m02G Gaq

, ~8!

where

G5
hp /T

K~0!21
~8a!

and

aq5
K~q!21

K~0!21
. ~8b!

Also integrating the linearized version of Eq.~4! in region II,
one gets
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m~ t !5G1~m02G!exp@lb~ t2t0!#, ~9!

where b5K(0)21. At the end of region II, the value o
magnetization is given by

mw5m~ t01Dt !5G1~m02G!exp~lbDt !. ~10!

The value of the critical field at the phase boundary, viz.hp
c ,

can be obtained by substitutingmw50 in Eq. ~10!:

hp
c5

m0bT

12exp~2lbDt !
. ~11!

Using Eq.~9!, Eq. ~8! can now be written as

xq~ t !

xq
s

5exp@lbaq~ t2t0!#5exp$l@K~q!21#~ t2t0!%.

~12!

In regime III, however,h(t)50 and the~initial! boundary
condition is m(t01Dt)5mw . Integrating Eq.~7! into this
regime, one gets

xq~ t !

xq~ t01Dt !
5Fm~ t !

mw
Gaq

or

xq~ t !5xq
s exp$l@K~q!21#~ t1Dt !%Fm~ t !

mw
Gaq

, ~13!

where use has been made of Eq.~8!. Concentrating on the
dominatingq dependence of the susceptibility, one can wr

xq~ t !;xq
s exp@2q2j2#, ~14!

where the correlation lengthj is defined as

j[j~mw!5F ln~1/umwu!
12T/Tc

G1/2

. ~15!

This is one of the principal results of this paper, and it sho
that the characteristic lengthj diverges as the order param
etermw goes to zero.

Consider now thet dependence arising inxq50(t)
through the factorm(t)aq. Solving Eq. ~4! in regime III
yields

m~ t !5mw exp$lb@ t2~ t01Dt !#%, ~16!

which shows that long time is required to attain moder
values ofm(t) starting from low values ofmw . Especially,
starting from timet5t01Dt, the time taken by the system t
reach the final equilibrium value is defined as the relaxat
time t of the system. Therefore, from Eq.~16!, we can write

t5
1

l S T

Tc2TD lnS m0

umwu D . ~17!

The growth of the time scale occurs inxq50(t) through the
m(t) dependence as well:
s

e

n

xq50~ t !;Fm~ t !

mw
Gaq50

;exp$lb@ t2~ t01Dt !#%.

Equations~15! and ~17! can be used to establish a relatio
ship betweent andj:

t; lnS 1

umwu D;
T

Tc
j2. ~18!

This corresponds to critical slowing, with the characteris
time diverging with the characteristic length with the d
namical critical exponent

z52.

The above results are obtained in the linearized limit
the mean field equations of motion~4! and ~5!. We also
measured, solving the full dynamical equation~4! numeri-
cally, the relaxation timet by computing the time required
by m(t) to reach the final equilibrium value6m0, with an
accuracy ofO(1024), from the time of withdrawal of the
pulse~in regime III!. Figure 2 shows that thist indeed di-
verges as one approaches the phase boundary, wheremw
50. In fact, the numerical results are observed to fit ve
well with the analytic result~18! ~shown by the solid line in
Fig. 2!.

The divergence of both the time and length scales w
also investigated at low temperatures by employing Mo
Carlo methods. Simulations@4# on a square lattice of typica
sizeL5200 with periodic boundary conditions indicated a
exponential growth of the time scale:

t;exp@2c~T!umwu#, ~19!

where c(T) is a constant depending on temperature on
Further, finite size scaling of the order parameter relations

mw;uhp2hp
cub ~20!

is consistent@4# with b50.9060.02 and with a correlation
length divergence withn51.560.3. ~Herehp

c is the critical
value of the pulse fieldhp , making mw50 at the end of
regime II.! These results qualitatively compare with the d
vergence of scales at the transition point predicted by
mean field treatment. However, the growths of the time a
length scales are quantitatively of different nature to that

FIG. 2. Divergence of the relaxation time in the mean field lim
for T50.8 andDt520 @from the numerical solution of Eq.~4!#.
The solid line indicates the corresponding analytical estimate@Eq.
~15!#.
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the mean field case, because at low temperatures dro
growth is a dominant mechanism. The growth of droplets
size l is associated with an activation energy@4# E( l )
522hpl d1s l d21, wheres is the surface tension. Using th
relationship betweenl and hp at the energy minimum, to
gether with Eq.~18! at smallmw , gives a characteristic time

t;expF1

T
hp

12dG;exp@2c1~T!umwu1/b~hp
c!d22#. ~21!

Sinceb is close to unity, this is consistent with the observ
relation ~19!.

The typical size of a cluster or domain of reversed sp
provides a qualitative idea about the correlation length of
system. In order to study the growth of the typical sp
reversed domain size, we define a pseudocorrelation lengj̃
as follows:

j̃25

(
s

Rs
2s2ns

(
s

s2ns

, ~22!

wherens is the number of domains or clusters of sizes and
the radius of gyrationRs is defined asRs

25( i 51
s ur i2r 0u2/s,

wherer i is the position vector of thei th spin of the cluster
and r 05( i 51

s (r i /s) is defined as the center of mass of t

particular cluster. The pseudocorrelation lengthj̃ is observed
to grow to system size order as one approaches the p
boundary~Fig. 3!, thereby providing a further indication o
the growth of a length scale. It should be noted that, as in
ys
let
f

s
e
-

se

e

static transition in the pure Ising system, the lengthj̃ is dis-
tinct from the correlation length@7#.

In the linear limit of the mean field dynamics, it has be
possible to show the divergence of both the length and t
scales at the magnetization-reversal transition phase bo
ary. Sharp growth of these scales has also been observ
the Monte Carlo case, studied in two dimensions. Here,
looked at the size distribution of the clusters or domains
reversed spins whose average size was observed to gro
the phase boundary of the transition.
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FIG. 3. Growth of the pseudocorrelation lengthj̃ for different
system sizes in the Monte Carlo study on a square lattice of
L3L.
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