PHYSICAL REVIEW E VOLUME 59, NUMBER 5

RAPID COMMUNICATIONS

MAY 1999

Length and time scale divergences at the magnetization-reversal transition in the Ising model

R. B. Stinchcombé? A. Misra? and B. K. Chakrabafi

Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
2saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Calcutta 700 064, India

(Received 17 February 1999

The divergences of both the length and time scales, at the magnetization-reversal transition in the Ising
model under a pulsed field, have been studied in the linearized limit of the mean field theory. Both the length
and time scales are shown to diverge at the transition point and it has been checked that the nature of the time
scale divergence agrees well with the result obtained from the numerical solution of the mean field equation of
motion. Similar growths in length and time scales are also observed, as one approaches the transition point,
using Monte Carlo simulations. However, these are not of the same nature as the mean field case. Nucleation
theory provides a qualitative argument that explains the nature of the time scale growth. To study the nature of
growth of the characteristic length scale, we have looked at the cluster size distribution of the reversed spin
domains and have defined a pseudocorrelation length that has been observed to grow at the phase boundary of

the transition[S1063-651X99)50405-4

PACS numbeps): 05.50+q

The dynamic response of pure Ising systems to time deinduce a transition from-mg to —mjq (in the limit of van-
pendent magnetic fields is currently being studied intensivelyshing field strength Instead, if the field is applied in the
[1]. In particular, the response of the Ising systems to pulsefbrm of a pulse, the asymmetry in the free energy wells is
fields has recently been investigaf@d-4]. The pulse can be removed after a finite period of time. In that case, the point
either “positive” or “negative.” At temperatured below  of interest lies in the combination of the pulse height or
the critical temperaturd@ of the corresponding static case strength fi,) and its width or duration At) that can give
(without any external field the majority of the spins orient rise to the transition fromt+m, to —m,. We call this a
themselves along a particular direction, giving rise to themagnetization-reversal transition. A crucial point about the
prevalent order. In the following we denote, by positiee  transition is that it is not necessary that the system attain its
negative pulse, an external field pulse applied aldieg op-  final equilibrium magnetizatior- m, during the presence of
posite the direction of the existing order. The effects of athe pulse; the combination ¢, andAt should be such that
positive pulse can be analyzed by extending appropriatel{he final equilibrium state is attained at any subsequent time,
the finite size scaling technique to this finite time window even a long time after the pulse is withdrawsee Fig. 1
case[2], and it does not involve any new transition or intro- The “phase boundary,” giving the minimal combination of
duce any new thermodynamic scale into the problem. Thé, and At necessary for the transition, depends on the tem-
negative field pulse, on the other hand, induces a new dyperature. AsT—T., the magnetization-reversal transition

namic “magnetization-reversal” transition, involving com-
pletely new length and time scalg3,4]. In fact, we believe
that the spontaneously occurring dynamic symmetry-
breaking transition in Ising models undérigh frequency
external oscillating field§1,5] actually occurs during this
negative pulse periothnd not during the positive pulse pe-
riod as compared to the instantaneous existing order in the
system, and the universality classes of these two transitions
are identical. We report here the results of an investigation
on the nature of the characteristic length and time scales
involved in this dynamic magnetization-reversal transition in
an Ising model under the negative pulsed field.

In the absence of any symmetry-breaking field, for tem-
peratures below the critical temperature of the corresponding
static case T<T,), there are two equivalent free energy
minima with average magnetizatioasmy and —mq. If in
the ordered state the equilibrium magnetizatior-is, (say)
and a very weak pulse is applied in the direction opposite to
the existing order then, temporarily, during the pulse period,
the free energy minimum with magnetizatienmy will be

h(t)

m(t)

-m. +

II

III

t +At t

FIG. 1. Schematic time variation of the pulsed fibld) and the

brought down compared to that withmj. If this asymmetry  corresponding response magnetizatiaft) for two different cases.
is made permanent, then any nonvanishing fisldength,  The solid line indicates no magnetization-reversal case, whereas the
which is responsible for the asymmetry, would eventuallydashed line indicates a magnetization-reversal case.
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occurs at lower values dfi, and/or At and the transition ferentiation we can sef;(t)=h(t) to obtain results for a

disappears at=T,. pulsed field uniform in space. Then;(t)—m(t) gives

In the present paper we present an argument that this dy-
namic transition corresponds to infinite time and length dm(t) A kovm h(t) 1| 1+m(t) 4
scales, all along the phase boundary in tige- At plane at Cdt (O)m(t)+ T 2 n 1—-m(t) )

any temperature &<T.. We show that the relaxation time
7 and the correlation lengthboth diverge as one approaches The resulting equation for the susceptibility, in the Fourier
the phase boundary. In the mean field case, we shiming  space, is
equations of motion linearized in the magnetizatitmt

qu(t)

'”<|niw|) ¢ \/ﬂ )

W
Here, K(q) is the Fourier transform oKj;; for small g,
wherem,, is the “order parameter” for the transition, given K(q)=K(0)(1—q?); in the mean field theori (0)=T./T.
by the magnetization at the time of withdrawal of the pulse,Using Eqgs.(4) and (5), we can write
starting fromm,, the equilibrium magnetization at the tem-

1 N
=\ K(Q)_m Xq(t)+fé(t_t'). (5)

perature T(<T,) (see Fig. 1 It may be noted that 1

m,(T,h,,At)=0 at the phase boundary of the dya(D K(Q)—m Xq(t)

magnetization-reversal transition. Xal) . (6)
We also show tha¥ and r grow sharply as one ap- dm(t) K(O)m t)—ﬂ—i . 1+m(t)

proaches the phase boundary in the Monte Carlo case as ( ( T 2 [1-m(t)

well, although the nature of the growths are different from

the mean field case. We also study the shapes and sizes lof the limit whenm(t) is small, retaining up to the linear
the reversed spin domains as one approaches the spiterm inm(t),

reversal transition phase boundary in the Monte Carlo case.

We compare the observed growth in the relaxation time in dxq(t) _ [K(g)—=1]xq(t) @
this case with that predicted by the nucleation theory. dam(t) b
The Ising model in the presence of an external magnetic [K(O)=1]m(t)—

field is described by the Hamiltonian

1 This equation can now be solved in the three different
__ - ca _ . time zonegFig. 1): namely, in the equilibrium regime before
H="3 UE,) iS5 2. hS. @ the application of the pulse whema=m, (regime ), the
(nonequilibrium pulsed period regime, at the end of which
whereS; denotes the spin dth site, J;; is the cooperative m=m,, (regime 1), and the regime after the pulse is with-
interaction between the spins at siieandj and (---) de-  drawn (regime lll) when the system eventually returns to
notes the nearest-neighbor pairs. Herés the external field, equilibrium [with m(t—o)=—my if the transition occurs,
which is allowed to be time dependent, and also site depersr =my if it does nol. Hence in regimes Il and IlI, we get
dent, to allow investigation of separation-dependent correlathe nonequilibrium susceptibility, as a function ofm(t).
tions. The free energy of the system in the Bragg-WilliamsThe solution of Eq(4) also gives the nonequilibrium mag-
approximation is given by6] netizationm(t), and hence we can also arrive)gf(t). Not-
ing that x4(t) ZXZ whenm(t) =m,, at the start of regime I,
1 wherem, and ¢ are equilibrium values of the magnetization
F=- 2 (.E Jijmim; = 2 hym; and susceptibi?ity respectively, we can integrate Ef.in
that regime to obtain

+§) In(1—m2)+m | M om2l @
n m) m; In -m n2, (2 Xq(t): m(t)—T']% ®
Xs mo_r ’
with m;=(S;), where(- - -} denotes the thermal average. In d
the presence of a time- and site-dependent field, the timgyhere
dependent magnetization satisfies the Langevin equation
hp/T
dm N 6F F=m (84)
dt T om;
and
hi(t) 1 [1+m(t)
N2 KimO+ gl @ _K@-1 .
9 K(0)-1"

whereK;;=J;; /T and\ is a constant. Differentiation with
the space- and time-dependent magnetic fie{t) generates Also integrating the linearized version of Ed,) in region I,
the space- and time-dependent susceptibility. After the difone gets
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m(t) =T+ (m—T)exd Ab(t—to)], 9 » T

whereb=K(0)—1. At the end of region Il, the value of 40
magnetization is given by

m,=M(to+At)=I"+(my—I")exp(AbAt). (10

The value of the critical field at the phase boundary, hf;,.
can be obtained by substitutimg,,=0 in Eq. (10):

mebT m
> (12) v
FIG. 2. Divergence of the relaxation time in the mean field limit
for T=0.8 andAt=20 [from the numerical solution of Eq4)].
The solid line indicates the corresponding analytical estirate

C

M= T exp —\DAD) "

Using Eq.(9), Eq. (8) can now be written as

(19)].
Xq(t) _ _
~ s —exAba (-t ]=exeAK(a) ~ 1]t —to)). e
! (12 Xq=o(t)~ m—} ~exp[Ab[t—(tg+At)]}.

In regime IIl, howeverh(t)=0 and the(initial) boundary  £qations(15) and (17) can be used to establish a relation-
condition ism(ty+At)=m,,. Integrating Eq.(7) into this ship betweerr and ¢&:
regime, one gets

1 T,
Xq(t) [m(t)rq 7~In W ’VT—f . (18
= W C

This corresponds to critical slowing, with the characteristic

or time diverging with the characteristic length with the dy-
namical critical exponent

s m(t) |2
Xo(O)= x5 expA[K (@)~ 1](t+AD} ——| (13 z=2,
W

The above results are obtained in the linearized limit of
the mean field equations of motio@d) and (5). We also
measured, solving the full dynamical equatief) numeri-

s _42¢2 cally, the relaxation timer by computing the time required
Xa(U)~Xq &XH ~a°¢), (14 by m(t) to reach the final equilibrium valug:mg, with an
accuracy ofO(10 %), from the time of withdrawal of the
pulse (in regime lll). Figure 2 shows that this indeed di-

12 verges as one approaches the phase boundary, whgre
(19  =0. In fact, the numerical results are observed to fit very
well with the analytic resul{18) (shown by the solid line in

where use has been made of E8.. Concentrating on the
dominatingq dependence of the susceptibility, one can write

where the correlation length is defined as

In(1/m,|)

This is one of the principal results of this paper, and it showd19: 2)-

that the characteristic lengthdiverges as the order param- _ 1he divergence of both the time and length scales were
eterm,, goes to zero. also investigated at low temperatures by employing Monte

Consider now thet dependence arising inyg—o(t) Carlo methods. Simulatiorig] on a square lattice of typical
through the factom(t)?. Solving Eq. (4) in regi?ﬁg I SizeL=200 with periodic boundary conditions indicated an
yields exponential growth of the time scale:

T~exgd —c(T)[my/], (19

where c(T) is a constant depending on temperature only.

. ) Surther, finite size scaling of the order parameter relationship
values ofm(t) starting from low values ofn,, . Especially,

starting from timet=t,+ At, the time taken by the system to my~| hp— hg|ﬁ (20)

reach the final equilibrium value is defined as the relaxation

time 7 of the system. Therefore, from E(L.6), we can write is consistenf{4] with 8=0.90+0.02 and with a correlation
length divergence withy=1.5+0.3. (Here hy is the critical

T )In(ﬂ) 17 value of the pulse fielh,, makingm,=0 at the end of

T.—T regime 1l) These results qualitatively compare with the di-

vergence of scales at the transition point predicted by the
The growth of the time scale occurs i-o(t) through the  mean field treatment. However, the growths of the time and
m(t) dependence as well: length scales are quantitatively of different nature to that of

1
Y
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the mean field case, because at low temperatures droplet 25 . - - X100 —
growth is a dominant mechanism. The growth of droplets of e L=200 =

size | is associated with an activation enerdg] E(l) 201 T L=400 ----- ]

= —2h,l%+ o197, whereo is the surface tension. Using the sk |
relationship betweeh and h, at the energy minimum, to- 13 B Tl

gether with Eq(18) at smallm,,, gives a characteristic time

1
+1-d
T exp{ T h b
0 0.2 04 0.6 0.8

Sincep is close to unity, this is consistent with the observed w
relation (19).

The typical size of a cluster or domain of reversed spins
provides a qualitative idea about the correlation length of th
system. In order to study the growth of the typical spin-

reversed domain size, we define a pseudocorrelation lghgth
as follows:

~exf —cy(T)|m,|*A(hp)? 2. (2D)

0 1 1 1 1

FIG. 3. Growth of the pseudocorrelation lengtHor different
ystem sizes in the Monte Carlo study on a square lattice of size
XL.

static transition in the pure Ising system, the lengtis dis-
tinct from the correlation lengtf7].
In the linear limit of the mean field dynamics, it has been

Z RisznS possible to show the divergence of both the length and time
22_ S scales at the magnetization-reversal transition phase bound-
&= , (22) ;

E 5 ary. Sharp growth of these scales has also been observed in
= SNs the Monte Carlo case, studied in two dimensions. Here, we

looked at the size distribution of the clusters or domains of
whereny is the number of domains or clusters of sizand ~ eversed spins whose average size was observed to grow at
the radius of gyratiorR, is defined aR2=3%_,|r;—ro|%/s, "€ phase boundary of the transition.

wherer; is the position vector of theth spin of the cluster A M. would like to thank A. Dutta for useful discussions.
andro=23{_y(r;/s) is defined as the center of mass of thep k.C. is grateful to the INSA-Royal Society Exchange Pro-
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to grow to system size order as one approaches the phatmiversity of Oxford, U.K., where part of the work was
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